

3. A curve has equation	
$y = 2x^3 - 4x + 5$	
Find the equation of the tangent to the curve at the point $P(2, 13)$.	
Write your answer in the form $y = mx + c$, where <i>m</i> and <i>c</i> are integers to be found.	
while your answer in the form $y = mx + c$, where <i>m</i> and <i>c</i> are integers to be found.	
	(Total 5 marks)
4.	(
Find	
$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x$	
writing your answer in simplest form.	
•	
· ·	
	(Total 4 marks)
5.	(1000011000105)
Given that $y = x^2$, use differentiation from first principles to show that $\frac{dy}{dx} = 2x$	
	(Total 3 marks)
	(

6. The curve with equation	
$y = x^2 - 32\sqrt{x} + 20, x > 0$	
has a stationary point P.	
Use calculus	
(a) to find the coordinates of P ,	
	(6)
(b) to determine the nature of the stationary point <i>P</i> .	
	(3)
-	(Total 9 marks)
7. The finite region <i>R</i> , shown shaded in Figure 2, is bounded by the curve with equation $y = 4x^2 + 3$, the <i>y</i> -axis and the line with equation $y = 23$	$y \land y = 4x^2 + 3$
Show that the exact area of <i>R</i> is $k\sqrt{5}$ where <i>k</i> is a rational constant to be found.	23
	R
	<i>U</i> . <i>x</i>
	Figure 2
	(Total 5 marks)

8. The gradient of a curve *C* is given by

$$\frac{dy}{dx} = \frac{(x^2 + 3)^2}{x^2}, \ x \neq 0.$$

(a) Show that $\frac{dy}{dx} = x^2 + 6 + 9x^{-2}$

The point (3, 20) lies on C.

(b) Find an equation for the curve *C* in the form y = f(x).

(Total 8 marks)

9. Solve, for $360^{\circ} \le x < 540^{\circ}$,

 $2\sin^2 x + 3\cos x - 3 = 0$

(Total 5 marks)

(2)

(6)

